土壤日晒与病虫害综合治理

综合病虫害管理,即联合使用多种防治方法,使病虫害损害保持在经济阈值以下,是防治病虫害的基本原则之一可持续农业,因为虫害管理策略的选择专门针对种植系统和技术条件优化现有策略的性能,并消除不必要的农药应用(Mullen et al. 1997;佩兰1997;马丁2003)。土壤日晒证明了综合病虫害管理策略的很大适用性,因为它适用于大多数种植系统,并与大量化学、生物和文化控制方法兼容或协同(Stapleton和DeVay 1995;许许2000;Stapleton 2000)。综合病虫害管理的总体成就和对大范围控制策略的需求促使许多研究人员研究了日晒与几乎所有可用的控制土传病原体、线虫和杂草的替代策略相结合的效果和机制。

日晒与减少熏蒸剂用量的结合对许多真菌病原体产生了额外的抑制作用,尽管这种改善的控制在以前有很长熏蒸历史的土壤中不明显(Albregts et al. 1996)(见图9.7)。经积极证实,日晒和甲基溴、甲基钠、1,3-二氯丙烯+氯苦苷或达唑美协同应用可降低V. dahliae、F. oxysporum和S. rolfsii的发病率存活率和症状(Frank等人,1986年;Ben-Yephet et al. 1988;Eshel et al. 2000;Yucel et al. 2007);Rhizoctonia spp., P. cactorum,和P. capsici (Yucel 1995;Benlioglu et al. 2005);P. nictianae, F. oxysporum, and S. rolfsii (Chellemi et al. 1994, 1997;Stevens et al. 2003;Chellemi and Mirusso 2006); P. lycopersici and P. terrestris (Tjamos 1984; Porter et al. 1989); and P. brassicae (Porter et al. 1991). Sequence of treatments was shown to play an important role in the final result, as Eshel et al.

土壤日晒
图9.7意大利南部塑料温室实验中茄子的不同生长方式。前景为日照地块,中间为非日照地块

(2000)发现田间亚致死加热后熏蒸处理明显比相反顺序更有效。此外,还发现在日晒前用美沙姆钠预湿润土壤可以控制其他土壤传播疾病因子(Frank等,1986年;Tjosvold 2000)。土壤的杀线虫作用曝光还发现,与低剂量熏蒸杀线虫剂联合使用,如1,3-二氯丙烯(Stapleton和Devay 1983年)、乙烯二溴化烷(Barbercheck和Von Broembsen 1986年)、甲基溴(Cartia等人1989年)、甲胺钠或达唑美(Yucel等人2007年),可增强处理效果。土壤日晒与减少1,3-二氯丙烯剂量的组合进一步减少了美国番茄和辣椒(Capsicum annuum L.)和马铃薯上的根结线虫数量(LaMondia et al. 1986;Chellemi and Mirusso 2006)和意大利胡萝卜上的H. carotae和洋葱上的D. dipsaci的密度(Greco et al. 1990;Greco et al. 1992)。太阳加热与颗粒状杀线虫剂的关联也被证明可以有效减少生菜和甜瓜上的M. incognita根伤(Lamberti et al. 2000)。然而,加利福尼亚的其他田间实验表明,通过杀线虫联合日晒并没有改善对盲蝽和异种紫锥虫的控制(Stapleton et al. 1987)。最后,Peachey et al.(2001)记录了低剂量的甲基苯三甲酸钠对杂草的日晒抑制能力的改善。

有机改编剂的生物杀灭活性被假设是由土壤微生物群向拮抗种群的转变和/或有机物分解过程中释放的有毒化合物引起的(Stirling 1988)。日晒与修正的协同作用可能是由于这些机制的增强,因为Gamliel和Stapleton(1997)发现,分解有机物质到日晒土壤大气中释放的许多挥发性化合物的浓度显著提高。

一种有效的综合日晒处理与各种有机修正,如堆肥,作物残余物,绿色肥料据报道,在土壤传播的病原体的控制方面(Kodama和Fukui 1982;弗里曼和卡坦1988;Gamliel and Stapleton 1993a,b;Chellemi等,1997)。高氮有机材料有效地降低了各种土壤传播病原体的接种量,包括像M. phaseolina这样的耐热物种和线虫(Chun and Lockwood 1985;Lodha 1995;Rodriguez-Kabana 1986)。结合日晒与这些材料可能是非常有效的,如氨和/或亚硝酸分解过程在塑料覆盖的土壤中保留更长的时间,更有效地扩散(DeVay和Katan 1991;Lazarovits et al. 2001;Lodha et al. 2003)。研究发现,鸡粪改进剂可提高生菜中P. ultimum的日晒效果(Gamliel and Stapleton 1993),草莓中Rhizoctonia spp.和P. cactorum的日晒效果(Benlioglu et al. 2005),番茄中S. rolfsii的日晒效果(Stevens et al. 2003)农场粪便对F. oxysporum F. sp. cumini和M. phaseolina的还原效果非常好(Lodha 1995)。Ndiaye et al.(2007)报道了豇豆(Vigna unguiculata, L.)的接种物密度和炭腐症状严重程度的显著降低。Walpers通过将太阳能与富含氮的谷子残体相结合,而将太阳能与宰杀残体相结合则没有任何效果(Kurt和Emir 2004)。在不同条件下,与单独处理相比,土壤日照与各种有机修正(肉鸡凋落物、棉籽粕、羽毛粕、大豆油饼和城市植物碎片)的组合也被证明能改善根结线虫的抑制(Gamliel和Stapleton 1993b;Stevens et al. 2003;Chellemi 2006;Oka et al. 2007)。此外,Greco等人(1992)报道了用小麦秸秆改良过的土壤进行日晒可以更好地抑制洋葱(A. cepa L.)上的球茎线虫D. dipsaci,但联合施用对胡萝卜上的胡萝卜囊线虫H. carotae无效。黎巴嫩的实地研究也报告了日光与鸡粪在杂草控制方面的协同作用,如种子发芽O. crenata和cucuta campestris Yunck。在先经过改良后经过日晒的土壤中被强烈抑制(Haidar et al. 1999;Haidar和Sidahmed 2000)。Mallek等人(2007)提出,对洋葱和大蒜(Allium sativum L.)的干燥作物残留物进行修正,可以在不利气候或较短处理条件下改善太阳加热对杂草的控制。raybet雷竞技最新

有毒挥发物,主要是异硫氰酸酯和醛,在十字花科植物残渣降解到土壤中的过程中被释放出来,被发现是抑制或减少许多土壤传播的病原体和害虫的原因(Angus et al. 1994;Keinath 1996;Mayton等,1996;Matthiessen和Kirkegaard 2006)。Gamliel等人(2000)报道挥发物浓度与土壤温度和塑料覆盖下发生的部分厌氧条件直接相关。自20世纪80年代初以来,就有报道称与芸芥-ceous绿肥组合可以改善日光性能(Horiuchi et al. 1982),并在随后的几十年里在各种实验条件下进行了大量研究。在实验室条件下,亚致死加热与crucifer修正相关联降低了P. ultimum和S. rolfsii的萌发(Stapleton et al. 1995),并在田间试验中有效控制了M. phaseolina (Lodha et al. 2003)。田间综合日晒与油菜改种对控制枯萎病菌和菜豆枯萎病菌非常有效(Ramirez-Villapudua and Munnecke 1987;Ramirez-Villapudua和Munnecke 1988;Souza 1994; Lodha 1995), but also improved suppression of various other soilborne pathogens (Gamliel and Stapleton, 1993a, vb; Gamliel et al. 2000). Incorporation of oil-cakes or green residues of mustard, Brassica juncea (L.) Czern., prior to solarization drastically reduced inocula of F oxysporum f. sp. cucumis and M. phaseolina (Lodha et al. 1997; Lodha and Mawar 2000; Israel et al. 2005), whereas cabbage residues did not enhance solarization effect on soil population of Phytophthora spp. (Coelho et al. 1999). Under greenhouse conditions, solarization integrated with cruciferous biofumigation provided an effective reduction of Pyrenochaeta corky root disease on tomato (Díaz Hernández et al. 2005), and effectively controlled infestation of root-knot nematodes and weeds on melon and pepper (Ploeg and Stapleton 2001; Guerrero et al. 2005). Additive effects could also be obtained from the integrated application of solar-ization and noncruciferous amendments, as Pinkerton et al. (2000) recorded an improved suppression of P. cinnamomi and V. dahliae when solarization was combined with green manures of sudangrass, Sorghum bicolor (L.) Moench subsp. drummondii, and barley (Hordeum vulgare L.), and Flores-Moctezuma et al. (2006) reduced damage of S. rolfsii in onion seedlings by integrating solar heating with green manures of parthenium weed, Parthenium hysterophorus L. Moreover, Lira-Saldivar et al. (2004) documented that leaf resin extract of Larrea tridentata (DC) Coville effectively reduced soilborne pathogens incidence and provided a partial protection against nematodes when combined with solari-zation. Blok et al. (2000) hypothesized the release of toxic compounds as a main mechanism also for the synergistic effect of these noncruciferous green manures in solarized soil.

无机添加剂也被报道用于改善土壤的日照效应(Stapleton et al. 1990)。与氰胺钙相结合的日晒对黄瓜枯萎病菌和黄瓜枯萎病菌的数量有较强的抑制作用,甚至几乎完全消灭。和汉斯。在一个仙人掌Hylocereus trigonus (Haw.)Saff。和黄瓜(Bourbos et al. 1997;Choi et al. 2007)。McSorley和McGovern(2000)通过将日光与碳酸氢铵或硫酸铵结合施用,观察到植霉B. longicaudatus的土壤密度较低。

日晒与生物防治剂的结合可能是改善土壤害虫管理的另一种选择(Katan 2000)。研究发现,经过热处理后,植物根际拮抗真菌T. harzianum的数量并没有减少,而是逐渐增加(Porras et al. 2007a;Jayaraj和Radhakrishnan 2008)。Chet et al.(1982)指出,在温室条件下,用哈茨菌的制备物涂覆鸢花球茎能非常有效地降低番茄枯萎病和罗氏菌引起的疾病的发病率,而在田间和温室条件下,日晒与哈茨菌的结合能显著控制番茄枯萎病的冠和根腐病(Yücel和Qinar 1989;Sivan和Chet 1993)。土壤日晒后施用T. harzianum菌株导致环孢菌(Armillaria spp.)的接种活力完全丧失(Otieno et al. 2003),或显著降低番茄上的Pythium衰减率(Jayaraj and Radhakrishnan 2008)。相反,土壤日晒与哈茨菌的组合并不能对大豆、菜豆、黄瓜和罗勒、basilicum提供任何添加剂控制(Minuto et al. 1995)。其他生物防治剂也被证明可以提高晒土的抑制力。Miller、Giddens和Foster等人证实,土壤日晒与绿僵菌(Gliocladium virens Miller)联合施用是防治番茄和辣椒上罗氏南枯病的潜在策略(Ristaino et al. 1991,1996)。荧光假单胞菌菌株在日晒土壤上的应用降低了番茄和凤仙花中赤霉病和毕氏菌病的发病率(McGovern et al. 2002; Jayaraj and Radhakrishnan 2008), and decreased bacterial wilt caused by R. solanacearum in ginger, Zingiber officinale Roscoe (Anith et al. 2000). Treatments with commercial formulations of Streptomyces spp. improved solarization effectiveness against Pythium spp., R. solani, and Fusarium and Verticillium wilts, whereas variable effects were found on P. lycopersici tomato corky root rot in greenhouse (McGovern et al. 2002; Minuto et al. 2006). Integration of soil solarization with a soil drench of Bacillus subtilis (Ehrenberg) Cohn reduced crown galls caused by A. tumefaciens on cherry rootstock in nurseries (Gupta and Khosla 2007), and use of mixed antagonistic strains of B. subtilis, T. harzianum, and/or Fusarium spp. as seed inoculants reduced the symptoms of R. solani on beet in solarized soil (Gasoni et al. 2007). Biocontrol agents also improved the effect of solar heating on root-knot nematodes, as solarization combined with commercial formulations of plant growth-promoting rhizobacteria or B. firmus Bredemann and Werner was as effective as a chemical treatment for the control of Meloidogyne spp. on tomato and pepper (Kokalis-Burelle et al. 2002; Giannakou et al. 2007). Treatments with a formulation of Pasteuria penetrans after solarization resulted in an additive suppression of M. javanica and M. incognita on cucumber (Tzortzakakis and Gowen 1994), whereas no further nematicidal effect was derived by combining the heat treatment with a commercial formulation of fungus Paecilomyces lilacinus (Thom) Samson (Anastasiadis et al. 2008). Hatcher and Melander (2003) also suggested an integrated use of soil solarization with biocontrol agents for the control of heat-resistant weeds normally escaping heat treatment alone.

采用适当的农艺措施或适当的土壤管理也可能是提高日照效果的宝贵选择。Ioannou(2001)报道说,在日晒土壤中,将茄子苗嫁接到抗性番茄砧木上,可以完全防止黄萎病、软木根腐病和根结线虫。Johnson等人(2007)通过将夏季长时间的土壤日晒和休耕相结合,有效地将C. esculentus抑制到可控制的水平,Sotomayor等人(1999)通过日晒和土壤浸水相结合,成功地控制了M. arenaria Neal。最后,Perrin等人(1998)建议适当管理myc-

日晒土壤中的or根共生可能是土壤熏蒸的有效替代,日晒土壤中AMF共生对韭菜粉根病的抑制也证明了这一点(Gamliel et al. 2004)。

继续阅读:结论土壤日晒

这篇文章有用吗?

0 0

读者的问题

  • 罗伯特。
    土壤日晒与病虫害管理有什么关系?
    一年前
  • 土壤日晒是一种害虫管理方法,它利用太阳的能量加热土壤,杀死杂草、昆虫和其他害虫。它包括用透明塑料布覆盖裸露的土壤,并捕获太阳能将土壤加热到害虫无法生存的温度。土壤日晒可以减少土壤害虫的数量,保护作物不受损害。
    • zewdi
      我们如何使用生物熏蒸剂和化感作用植物组合来管理菜豆?
      一年前
    • 生物熏蒸剂是一种替代化学熏蒸法控制菜豆杂草、病虫害的潜在方法。生物烟熏剂,如芥末、油菜籽和大蒜,释放出的化合物可以减少害虫、杂草和疾病的数量,而不会造成环境问题。此外,将化感作用植物组合与生物熏蒸剂结合使用,可以进一步加强菜豆作物的病虫害治理。化感作用植物是产生化学物质的物种,可以抑制其他植物的生长。一些化感作用植物可以与生物熏蒸剂结合使用来管理菜豆,包括油籽萝卜、荞麦、大麦、高粱和黑麦。这些植物可以种植在菜豆周围,以保护它免受杂草、害虫和疾病的侵害。